
# Berechnung von verkehrsbedingten Immissionen und Ermittlung ihrer Auswirkung auf Baudenkmälern

Forschungsprojekt gefördert von der Deutschen Bundesstiftung Umwelt 2009 / 2011

Institut für Steinkonservierung e.V. Mainz
Bayerisches Landesamt für Denkmalpflege
Technische Universität Darmstadt
Universität Mainz
Ing. Büro Schorling&Partner

12 04 2011

#### Warum das Programm XXXX nicht für diese Aufgabenstellung geeignet ist:



12.04.2011

#### Lösungsansatz – Software

# Verwendung des Lagrange Ausbreitungsmodells WINKFZ zusammen mit einem diagnostischen Windfeldmodell

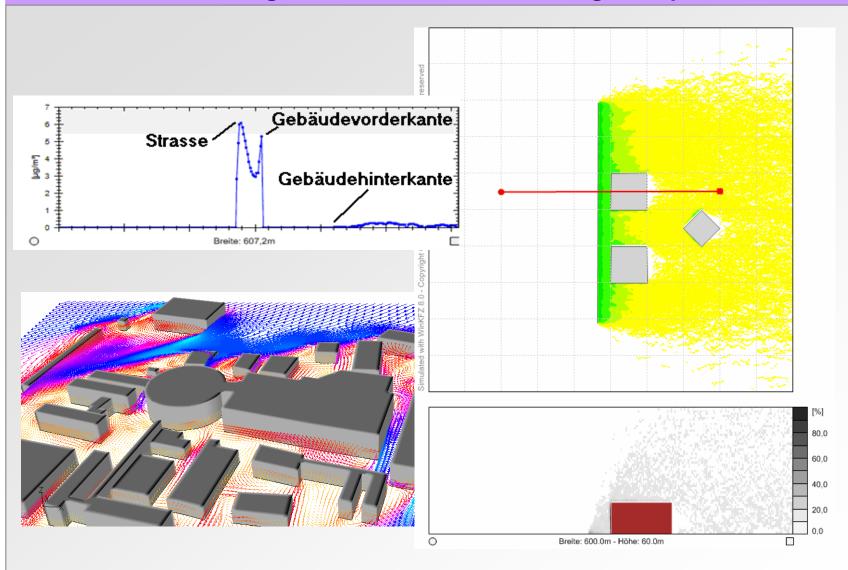
# Verifiziert nach VDI 3945 Validiert anhand von Tracerexperimenten

Berücksichtigung der Bebauung,

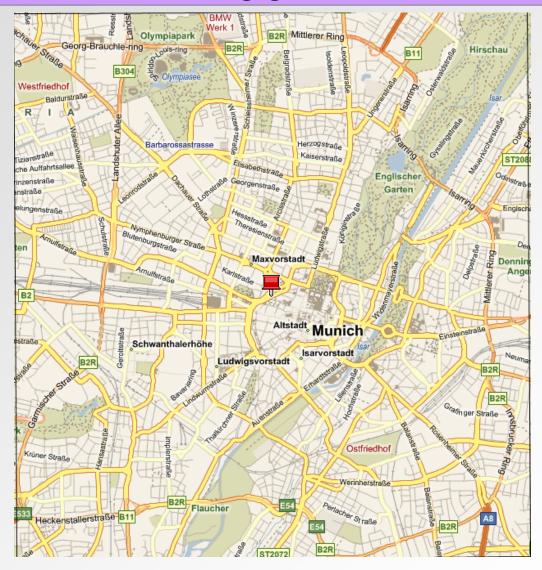
des Geländes,

des Strassennetzes,

der Meteorologie,


des variablen Verkehrs

12.04.2011

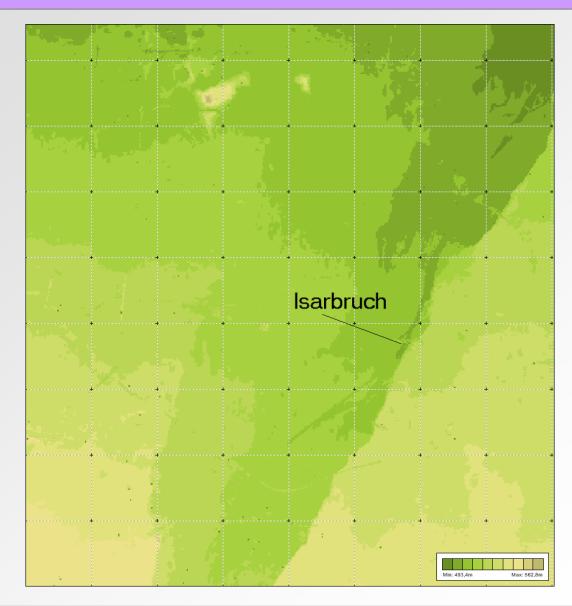

#### Lösungsansatz - Hardware

- Einsatz von GPU Graphical Processing Unit
  - 30 Prozessoren, 240 Threads mit 1.9 GFlops
- Erhöhung der Rechengeschwindigkeit um Faktor 50 und mehr gegenüber einer CPU
- Programmiersprache Visual C++ unter CUDA
- Berechnung unter Echtzeitbedingungen

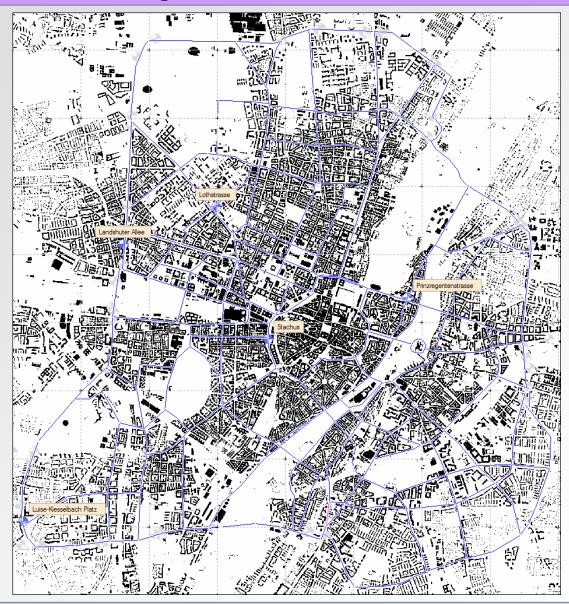
# Vorgehensweise der Berechnung: Beispiel



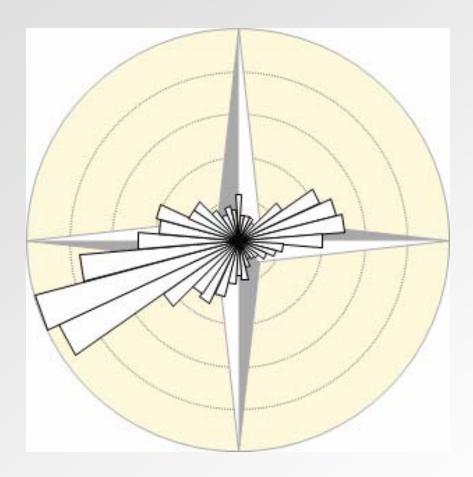
#### Untersuchungsgebiet München




12.04.2011 München: 8\*8.5 km<sup>2</sup>


#### Geländemodelle des LVG

- 1. Digitales Oberflächenmodell "DSM" (Digital Surface Model)
- Grundlage: kpl. Datensatz "first echo"
- Stadtrelief: Geländeoberfläche, Gebäude, Bäume
- 2. Digitales Objektmodell "DOM" (Digital Object Model)
- Grundlage: Datensatz "last echo", ohne Geländepunkte.
- Punkte auf Objekt-Oberflächen: Gebäudedächer, Brücken
- 3. Digitales Geländemodell "DTM" (Digital Terrain Model)
- Grundlage: Datensatz "last echo", nur Geländepunkte
- Geländeoberfläche mit Lücken unter Gebäuden
- 4. Digitales Geländemodell "FDTM" (Filled Digital Terrain Model)
- Grundlage: DTM
- Geländeoberfläche ohne Lücken (Interpolation fehlender Höhenpunkte im 1-m-Raster)
- 5. Digitales Geländemodell "TIN10" (Triangulated Irregular Network)
- Grundlage: FDTM
- Geländeoberfläche aus Dreiecksflächen, Höhendifferenzen zu 1-m-Höhenraster < 10 cm
- 6. Digitales Geländemodell "TIN50" (Triangulated Irregular Network)
- Grundlage: FDTM
- Geländeoberfläche aus Dreiecksflächen, Höhendifferenzen zu 1-m-Höhenraster < 50 cm


#### Geländemodell München

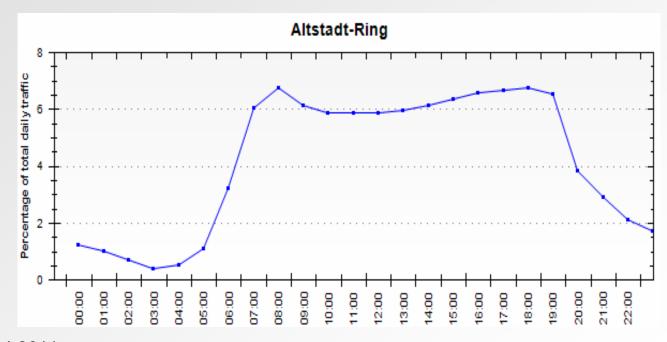


# Bebauungs- und Straßenmodell München



# **Meteorologie München: Windrose**




München - AKTERM: 8760 Stundenmittelwerte

#### Verkehr München

Verkehrsmengenkarte München:

DTV von Kfz und SV für alle Streckenabschnitte

>> Gangkurven zum Verkehr



12.04.2011

# Berechnungsgrundlagen für München

| Auflösung            | 5m                               |  |  |  |
|----------------------|----------------------------------|--|--|--|
| Bebauungsdaten       | 1 m auf 5m extrapoliert          |  |  |  |
| Geländedaten         | 20 m auf 5 m interpoliert        |  |  |  |
| Häuserform           | Flachdach                        |  |  |  |
| Verkehrsdaten        | DTV aus Verkehrsmengenkarte 2010 |  |  |  |
| Stundenmittelwert    | Tagesgang zum Verkehr            |  |  |  |
| Meteorologie         | AKTERM 1999 des DWD              |  |  |  |
| Emissionsdaten       | Handbuch für Emissionsfaktoren   |  |  |  |
| Verkehrssituation    | Innerörtlich Durchschnitt        |  |  |  |
| Strassennetz         | 144 km Länge                     |  |  |  |
| Tunnels /Strassen    | Einrohrig / einspurig            |  |  |  |
| Gebietsgröße         | 64 km²                           |  |  |  |
| Hintergrundbelastung | LfU Station Johanneskirchen      |  |  |  |

#### Fehlerbetrachtung - 1

Modellierung der Physik - Windfeld, Turbulenzstruktur

Modellstruktur - Auflösung, Rechenzeitschritte, Interpretation der Emissionen

Meteorologie - bodennahe Stundenmittelwerte an einem Aufpunkt

- keine Angaben zur Mischungsschichthöhe

Verkehr - DTV im jährlichen Mittel, keine individuellen Gangkurven

Bebauungs- und Strassenmodell - Auflösung, Modellierung

Hintergrundbelastung - Jahresmittelwert an einer LfU-Station

#### Fehlerbetrachtung - 2

# Immissionsbelastung PM10:

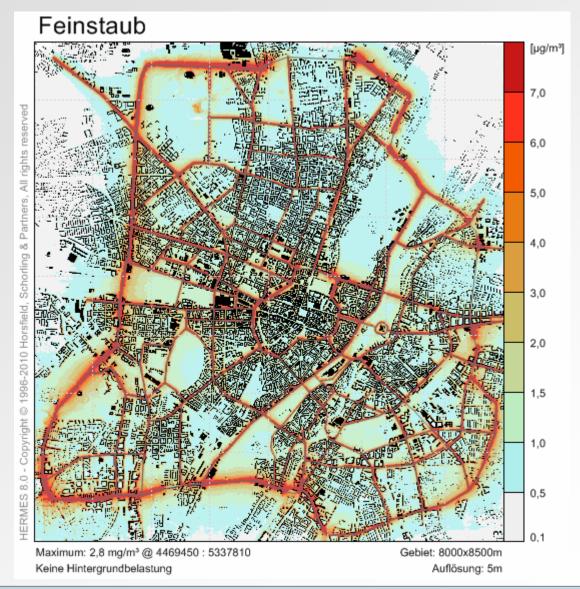
- Die Nicht-Auspuff Emissionen sind um den Faktor von bis 5 größer als die Auspuffemissionen
- Resuspension wird durch Niederschlag beeinträchtigt
- Niederschlag gibt es mindestens zu ca. 20% der Jahresstunden
- Es wurde nur eine Meßstation zum Niederschlag verwertet
- Die Hintergrundbelastung ist zumeist größer als die Zusatzbelastung

#### Fehlerbetrachtung -3

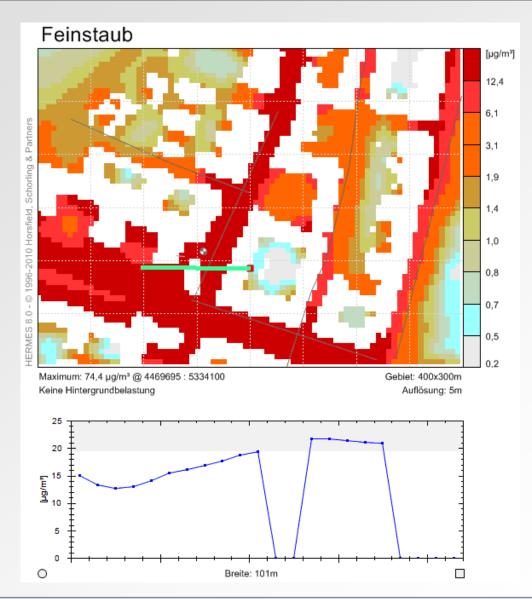
#### Einfluß des Schwerverkehrs:

Beträgt der Schwerverkehr 5% des DTV, so ist die durch den Schwerverkehr bedingte Emissionsbelastung von der Größe von ca. 50%

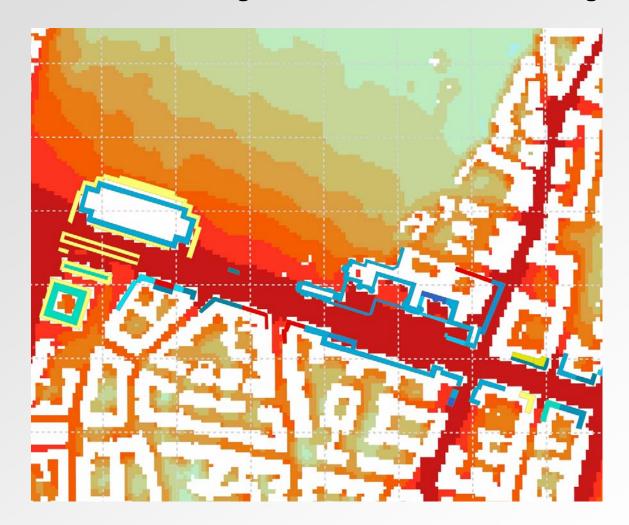
Erforderliche Unterscheidung von Linienbussen, Reisebussen und Lkw's sowie deren spezifischen Emissionen und Emissionshöhe


# Überschreitungshäufigkeit Landshuter Allee

| Jahr | Überschreitungshäufigkeit<br>des TMW von PM10 | Jahresmittelwert von PM10<br>[µg/m³] |
|------|-----------------------------------------------|--------------------------------------|
| 2005 | 107                                           | 45                                   |
| 2009 | 52                                            | 37                                   |

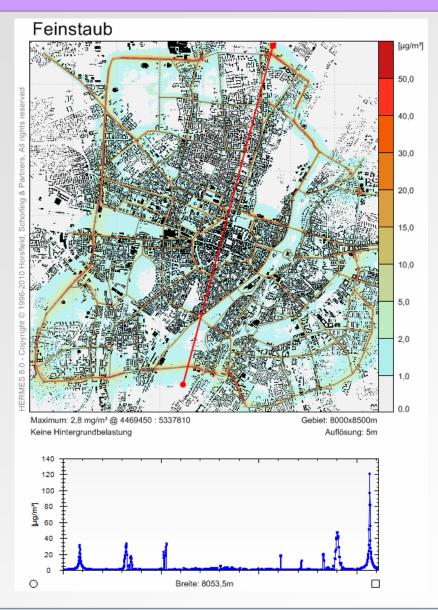

#### **Ergebnisse München**

Welche Genauigkeit der Berechnungsergebnisse dürfen wir bei nicht korrelierten Eingabedaten und den möglichen Fehlerquellen erwarten?


# **Ergebnisse München**



# **Ergebnisse München**




# Ergebnisse München Immissionsbelastung der Denkmalsstruktur überlagert



Prinzregentenstrasse – Jahresmittelwert PM10

# Ergebnisse München - Schnitt quer durch die Stadt



# Vergleich Rechnung – Messung München

| PM10                    | Messwert des LfU Mit Hintergrundbelastung   |    | Rechenwert<br>Ohne Hintergrundbelastung |  |
|-------------------------|---------------------------------------------|----|-----------------------------------------|--|
|                         | 1999, 2006- 2009<br>Min [µg/m³] Max [µg/m³] |    | [µg/m³]                                 |  |
| Lothstrasse             | 22                                          | 34 | 9                                       |  |
| Prinzregentenstr        | 25                                          | 33 | 19                                      |  |
| Landshuter Allee        | 36                                          | 44 | 39                                      |  |
| Luise-Kiesselbach-Platz | 26                                          | 44 | 38                                      |  |
| Johanneskirchen         | 20                                          | 27 |                                         |  |

Tabelle 3: Vergleich der Mess- und Rechenergebnisse von PM10
– Jahresmittelwerte [μg/m³]

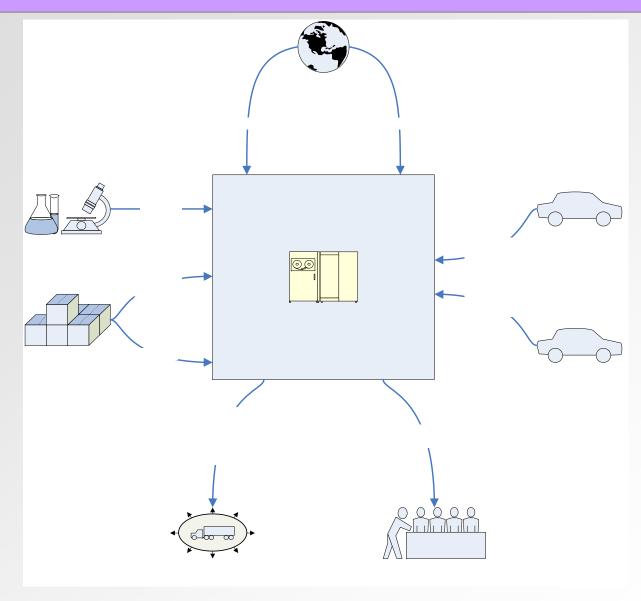

| NO <sub>2</sub>         | Messwei     | Messwert des LfU<br>Mit Hintergrundbelastung<br>1999, 2006- 2009 |          | Rechenwert<br>Ohne Hintergrundbelastung |  |
|-------------------------|-------------|------------------------------------------------------------------|----------|-----------------------------------------|--|
|                         | _           |                                                                  |          |                                         |  |
|                         | Min [µg/m³] | Max [µg/m³]                                                      | VDI 3782 | Chem.                                   |  |
|                         |             |                                                                  | Blatt 5  | Modell                                  |  |
| Lothstrasse             | 35          | 45                                                               | 21       | 23                                      |  |
| Prinzregentenstr        | 68          | 77                                                               | 30       | 33                                      |  |
| Landshuter Allee        | 85          | 98                                                               | 55       | 59                                      |  |
| Luise-Kiesselbach-Platz | 57          | 74                                                               | 41       | 44                                      |  |
| Johanneskirchen         | 27          | 33                                                               |          |                                         |  |

Tabelle 4: Vergleich der Mess- und Rechenergebnisse von NO2
– Jahresmittelwerte [μg/m³]

#### Zusammenfassung

- Die Berechnungsergebnisse liegen soweit keine Überschätzungen vorliegen, in dem Intervall, dass durch die Minima und Maxima der Messwerte definiert ist.
- Auf der Basis genauerer Eingabedaten zum Schwerverkehr und korrelierter Daten zum Verkehr und Meteorologie lässt sich die Rechengenauigkeit wesentlich erhöhen.
- Die Berechnungen lassen sich selbst für eine Großstadt unter Echtzeitbedingungen durchführen. So betrug die Rechenzeit für einen Stundenmittelwert für die Stadt München im Durchschnitt deutlich weniger als 10 Minuten. Hier ließen sich jedoch noch weitere Einsparungen erzielen.
- Auch unter Verwendung von unscharfen Eingabedaten lassen sich vergleichende Untersuchungen im Hinblick auf verkehrslenkende Maßnahmen erfolgreich durchführen.

#### Verkehrslenkende Maßnahmen



#### Verkehrslenkende Maßnahmen

